Testen von Hypothesen

$Gl\ddot{u}cksrad$

$$H_0: p = \frac{1}{20}, H_1: p < \frac{1}{20}. s = 0.1183.$$

 H_0 beibehalten. Der Verdacht ist nicht berechtigt.

2. Beispiel

a)
$$H_0: p = \frac{1}{10}, H_1: p > \frac{1}{10}. s = 0.0128.$$

 H_0 verwerfen. Die Annahme ist berechtigt.

b) 0.8281. Das ist ein Fehler 2. Art.

3. Hypothesen-Tests (Aus Prüfungen)

a)
$$H_0: p = \frac{1}{8}, H_1: p > \frac{1}{8}. s = 0.1098.$$

 H_0 beibehalten.

b)
$$H_0: p = 0.58, H_1: p > 0.58. s = 0.0291.$$

 H_0 verwerfen. Die Angabe von 58% stimmt vermutlich nicht.

c)
$$H_0: p = 0.3, H_1: p < 0.3. s = 0.017.$$

 H_0 verwerfen. Es besteht genügend Grund zur Annahme, dass die Gewinnchance kleiner ist als 30%

4. Virositis

$$H_0: p = 0.9, H_1: p > 0.9. s = 0.0712.$$

 H_0 beibehalten. Man darf das neue Medikament nicht als besser annehmen.

5. Weisse und rote Kugeln

Ja, weil
$$s = \sum_{x=4}^{5} \frac{\binom{5}{x} \cdot \binom{10}{5-x}}{\binom{15}{5}} = 0.0170 < \alpha$$

6. Hypothesentest (Aus einer Prüfung)

a) H_0 fälschlicherweise beibehalten.

b)
$$H_0: p_6 = \frac{1}{6}, H_1: p_6 < \frac{1}{6}.$$

b) H_0 : $p_6 = \frac{1}{6}$, H_1 : $p_6 < \frac{1}{6}$. s = 0.0873. H_0 beibehalten; der Würfel ist als gleichmässig anzusehen.

c)
$$s = \sum_{x=n}^{100} {100 \choose x} \cdot {1 \choose 2}^{100} < 0.05$$

c) $s = \sum_{x=n}^{100} {100 \choose x} \cdot (\frac{1}{2})^{100} < 0.05.$ Testen: $n = 58 \Rightarrow s = 0.066, n = 59 \Rightarrow s = 0.044$, also 59 oder mehr **Kopf**.

Stochastik Wahrscheinlichkeiten

7. Überprüfen des Verwerfungsbereichs

- a) Hier muss man pröbeln. Ab x = 48 **Zahl**.
- b) Das ist ein zweiseitiger Test, also muss der einseitige Verwerfungsbereich unter 2.5% zu liegen kommen. Man wird H_0 verwwerfen, wenn eine Seite 50 Mal oder häufiger erscheint.