Geometrie Pythagoras

3. Kathetensatz und Höhensatz

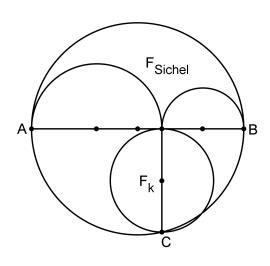
1. Rechtwinklige Dreiecke

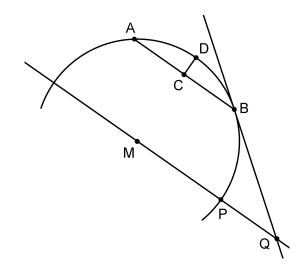
Für diese Aufgabe gelten die üblichen Bezeichnungen.

- a) $h = 84 \,\mathrm{cm}, p = 24.5 \,\mathrm{cm}$. Berechne alle Dreiecksseiten.
- b) $a = 4.32 \,\mathrm{m}, p = 0.87 \,\mathrm{m}. c = ?$
- c) $a = 6.3 \,\mathrm{cm}, c = 10.5 \,\mathrm{cm}$. Berechne p und h.
- d) $a = 30 \,\mathrm{cm}, h = 18 \,\mathrm{cm}$. Berechne die anderen Dreiecksseiten.

2. Konstruktion

Konstruiere eine Strecke der Länge $\sqrt{20}$ cm.


- a) Verwende den Kathetensatz.
- b) Verwende den Höhensatz.
- c) Weil $20 = 16 + 4 = 4^2 + 2^2$ gilt, kann man auch den Pythagoras verwenden.
- d) Weil $20=36\,{}^{\circ}16=6^2\,{}^{\circ}4^2$ gilt, kann man die Konstruktion mit dem Pythagoras nochmals (anders) durchführen.


3. Die Sichel des Archimedes

Betrachte die Konstruktion. Weshalb haben die Sichel und der Kreis gleiche Fläche? Der Durchmesser des kleinen Kreises steht senkrecht zum Durchmesser des grossen.

Figur zur Aufgabe 3

Figur zur Aufgabe 4

4. Knacknuss

Im Kreis mit Zentrum M kennt man die Sehne $AB=6\,\mathrm{cm}$ und die zugehörige Bogenhöhe $CD=1\,\mathrm{cm}$. Die Zentrale MP ist parallel zu $AB,\,BQ$ ist Kreistangente. Wie lang ist PQ?