6. Funktionen verknüpfen, Kettenregel

6.1. Technik des Differenzierens

1. Technik des Differenzierens

a)
$$y = f(x) = \sqrt{\sin(x) + \pi} = (\sin(x) + \pi)^{\frac{1}{2}}$$
.
 $y' = f'(x) = \frac{1}{2} \cdot (\sin(x) + \pi)^{-\frac{1}{2}} \cdot \cos(x) = \frac{\cos(x)}{2\sqrt{\sin(x) + \pi}}$

b)
$$y' = f'(x) = \cos(3 \cdot \sqrt{x}) \cdot \frac{3}{2} \cdot x^{-\frac{1}{2}}$$

2. Technik des Differenzierens (Aus einer Prüfung)

a)
$$f'(x) = x^3 + x^{-\frac{5}{4}}$$

b)
$$f'(x) = 3x^2 \cdot \cos(3x) - x^3 \cdot \sin(3x) \cdot 3$$

c)
$$f'(x) = \frac{1}{2} \cdot (\sin(x^2 + 1) + 1)^{-\frac{1}{2}} \cdot \cos(x^2 + 1) \cdot 2x$$

6.2. Anwendungen

1. Kurvendiskussion

$$\mathbb{D} = \{x | x \leq 6\}, N_1(0|0), N_2(6|0), \text{ Maximum } (4|4\sqrt{2}), \text{ keinen Wendepunkt} \}$$

2. Definitionsbereich

$$\mathbb{D} = \{x | -\sqrt{5} \le x \le \sqrt{5}\} \setminus \{\pm \sqrt{2}\}$$

3. Schnittwinkel

$$S(\,2\,|\,1\,)$$
 , $\alpha=90^\circ$

4. Parameter

$$t \leq 10$$
.

Hinweis: Die Koordinaten des Maximums sind $(\frac{\sqrt{2t}}{2} | \frac{t}{2})$.

5. Kurvennormale

$$y = -1.374x + 4.123, L(1.5 \mid 2.062)$$

6. Kurvennormale

Es gibt drei Lösungen: (2 |
$$-$$
 1.4907) , (-1.5 | $-$ 3.674) $\,$ und (-3 | 0)

7. Kurvenbetrachtung (Aus einer Prüfung)

a)
$$\mathbb{D} = \{x | x \ge \frac{2}{3}\}, N(\frac{2}{3} | 0), \text{ Maximum } (\frac{4}{3} | \frac{3}{4}\sqrt{2}), W(2.103 | 0.987).$$

b)
$$(1|1)$$
, $y = -2x + 3$

8. Kurvenschar

- a) $\mathbb{D}=\{x|x\leq 3\}$, keine Symmetrie, $N_1(0\,|\,0)$, $N_2(3\,|\,0)$, Maximum $(\,2\,|\,4\,)$, keinen Wendepunkt.
- b) $y = \sqrt{2} \cdot x^{\frac{3}{2}}$.

9. Kurvenschar (Aus einer Prüfung)

a)
$$M(\frac{t}{3} | -\frac{2\sqrt{3} \cdot t^{\frac{3}{2}}}{9}), y = -2 \cdot x^{\frac{3}{2}}.$$

b)
$$t = \frac{1}{3}$$
.

10. Maximaler Umfang

$$h = \frac{\sqrt{5}}{5}$$

11. Maximale Fläche

$$b = \sqrt{3} \cdot r.$$

Hinweis: Wähle beispielsweise x für die halbe Breite. Dann ist die Höhe r plus der obere Teil im Halbkreis, den man mit Pythagoras berechnet.

12. Extremalwerte (Aus einer Prüfung)

- a) $P(\sqrt{3}|\sqrt{6})$, $V = 2\pi \cdot \sqrt{3} = 10.883$.
- b) $P(\frac{\sqrt{15}}{2} | \frac{5}{4}\sqrt{3})$

Hinweis: Rechne den umschreibenden Zylinder minus den Kegel, der oben herausgeschnitten wird.